<u>Lecture-1</u>

Identical Particles.

Particles come in two types: bosons and fermions. The worldn of identical bosons is symmetric under particle exchange while that of fermions is anti-symmetric. * This statement is strictly true only in theree and higher spatial Limonoions. In two dimensions, one can also have particles which pick up an arbitrary phase under exchange. In one dimension, bosons and fermions com be transformed into each other by a nowland transformation (basonization) termionization").

Translating the above consider a wavefr of sentence into equa N bosons (fermions. Identical

Bosons:

$$\mathfrak{P}(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{7}, - \cdots, \mathbf{x}_{5}, - - \mathbf{x}_{n})$$

 $= \Re(x_1, x_2, ---x_j, ---x_{i,-}--x_{n})$

Identical fermions:

$$2p(x_1, x_2, ..., x_7, -..., x_5, -... x_N)$$
= -2p(x_1, x_2, -... x_5, -... x_N)

$$= - \psi (x_1, x_2, ---x_3, ---x_4, ---x_4)$$

het's study a simple example which illustrates this.

Two Identical Bosons/Fermions in a Potential $\hat{H} = \frac{\hat{P}_1^2}{2m} + V(\hat{x}_1) + \frac{\hat{P}_2^2}{2m} + V(\hat{x}_2)$

where VCX) 13 some arbitrary potential. How does one find eigenstates of H given that the two particles one identical bosons / fermions? Schrodinger's egn:

h y (x,, x2) = E \(\psi(x, \cdot x_2)\) $= \frac{-1}{2m} \frac{d^2 \psi}{d x_1^2} - \frac{1}{2m} \frac{d^2 \psi}{d x_2^2}$ + 1(x1) to + 1(x2) to

The above differential equation is sepanable in the variables x_1, x_2 since there are no terms in H that $\text{wix} \times \times_{1} \times_{2}$

This motivates the following ansatz:

$$P_{B/F} = u_1(x_1) u_2(x_2)$$

$$\pm u_2(x_1) u_3(x_2)$$
where $+$ sign refers to Bosons and
$$-$$
 to fermions. Fory to check

by $u /$ anti-sy u .

Claim: if u_1, u_2 are eigenfors of

the operator $\frac{p^2}{2m} + v$, then $\frac{1}{2m} + v$ and $\frac{$

 E_1 $u_i(x_1) u_j(x_2)$ $\pm E_2 u_i(x_i) u_i(x_2)$ E2 4; (x1) 4; (x2) E1 LicxI) Licx2) $= (E_1 + E_2) [u; (x) u; (x_2)$ $\pm u_{(Cx_1)} u_{(Cx_2)}$ = (E1+E2) 4B1E (x1,x2). OED. Pictorial Representation: The Hamiltonian can be written as $\hat{H} = \hat{h}(x_1) + \hat{h}(x_2)$ hus is called 6 single particle Hamiltonian? and its eigenstates unix) are called 6 single particle eigenstates?

is called In contrast YBIF (x, , x2) 6 many body elsonstate? hets draw the single panticle Eigeneversity in increasing energy: ____ Ui41 W; ____ W3 Since Panticles are identical, all one has to do specify the many body state PBIF is to select the single panticle Develo that one is "filling". In the abore example, we filled the levels i and j.

- . . - . ____u; _ - - -— U₂ Note that when U; (x1) U; (x2) $\mathcal{H}^{\mathcal{B}}(x',x^{5}) =$ AE (x1,x2) = 0 =) fernious must be in different states. This is called Pauli Exclusion. Now consider the case of three panticles. Cousider a wany-body state obtained by Silling Develo i.j. k. Again. Son

Such a state to exist for fermious, 1, j, k must be all distinct. No such restriction for bosons. Now. the picture looks like: __Uk Eisen Eversy of 4 B/F (x1, x2, x3) = E;+Es+Ek. Whate the wave-In HBIE 3

Simple trick to write down the wavefn: $V_F = \det M$ $M^2 = \begin{cases} u_1(x_1) & u_1(x_2) & u_1(x_3) \\ u_2(x_1) & u_3(x_2) & u_3(x_3) \\ u_3(x_1) & u_3(x_2) & u_3(x_3) \end{cases}$ $u_k(x_1) & u_k(x_2) & u_k(x_3) \end{bmatrix}$

Interchanging $x_1 \hookrightarrow x_2 \supseteq$ interchanging Columns of $M \supseteq 29 \neq -29 \neq$

as required.

If B is obtained by changing all the negative signs to positive in the above work-In.

Explicitly,

UR = U; (xs) [U;(x2) Uk(x3) + U; (x3) Uk(X2)] + Ui(x2) [Ui(x1) UR(x3) +4,(x3) UK(x3)] uicke) { uicke) ukcke) + W1(x2) Up(x1)] object is also sometimes devoted 6 permanent of a matrix, opposed to the determinant relevant for fernious,

Cleanly the form of YBIF becomes more and more tedious to write down explicitly as no. of particles increase (W! terms). There must be a simpler way to write the ware-for since we are just filling Certain single-particle levels obtained by solving a grantum mechanics problem of one pantill (the Hamiltonia

To set-up tus notation, let's first work in a basis-independent weary using brankets.

N = Sm + N opens).

4BIF when single particle levels luis, luss, -- luns are filled: 12/2 = 12(-) | 1 D (2) > 1 (D (6)) > - - - | (M D (N)) where Prans over all the n! permutations of the inducy 1,2,--n. This is just rewriting the expression for determinant in a basis independent way. To see this, first we need to learn how to calculate the dot product of IVE> with a basis rector in real space, which is correctly symmetrized/ anti-symmetized.

i.e. define
$$|x_1, x_2, --\cdot x_n|_F$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P |x_{P(0)}\rangle |x_{P(2)}\rangle - |x_{P(2)}\rangle$$
To obtain real-space wave- f^n , we need to calculate the dot-product
$$|x_1, x_2, --\cdot x_n| |y_F\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P (-)^Q |x_{Q(2)}| |y_{P(0)}\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P (-)^Q |x_{Q(2)}| |y_{P(2)}\rangle - |x_{Q(n)}| |y_{P(n)}\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P |x_{Q(2)}| |y_{P(2)}\rangle - |x_{Q(n)}| |y_{P}\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P |x_{Q(2)}| |y_{Q(2)}\rangle - |x_{Q(2)}\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P |x_{Q(2)}\rangle - |x_{Q(2)}\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P |x_{Q(2)}\rangle - |x_{Q(2)}\rangle$$

$$= \frac{1}{\sqrt{n!}} \sum_{P} (-)^P |x_{$$

 $= \frac{1}{m!} \sum_{R} \sum_{C} \frac{1}{R} \langle x_{(2)} | u_{R(2)} \rangle$ $- \frac{1}{R} \langle x_{(2)} | u_{R(2)} \rangle$

 $= \sum_{R} C_{n}^{R} \langle x_{(n)} | U_{R(n)} \rangle \langle x_{(2)} | U_{R(n)} \rangle$ = det | Uz(x1) Uz(x2) - - Uz(xn)] Uz(x2) - - Uz(xn) [~ ~ ?) Un(x2) - -- Un(xn) For bosons, one just drops the factor of (-)P every where, the rest of derivation Now we have already moved towards a notation that is faithful to the identical watere of particles and only focusses on the single-panticle levels that are occupied by these pembels